理数科1年 スーパーサイエンスI (SSI)「プレ課題研究」について

(1)目的

『科学的探究能力』を育成する

(2) 探究の進め方

- ①取り組む課題を設定する
- ②問い(仮説)を立てる
- ③調査・研究を行う
- ④問い(仮説)への回答を示す

(3) 日程について

月	日	回数	内容			
	4	1	化学探究	プレ課題研究案内		
	11	2	化学探究			
9	14	金	課題研究中	間発表会		
	18	3	化学探究			
	25	4	化学探究			
	2	(5)	化学探究			
	9		中間者	查		
10	16	6	化学探究			
	23	7	化学探究			
	30	1	プレ課題研究			
11	6	火	熊本県理数	枚科大会		
	13	2	プレ課題研究			
' '	20	3	プレ課題研究			
	27		期末者	查		
	4	4	プレ課題研究			
12	11	5	プレ課題研究			
1 ∠	16	日	サイエンスキャッスル2018			
	18	6	プレ課題研究発表会			

(4) 研究方法

現在受講しているすべての科目+化学、地学の中からテーマを設定する

- 各自が取り組みたい科目を選択する。
- ・同じ科目を選択した人でグループを構成する。
- ・教科書にある内容から探究したいテーマを設定する。

	2017_理数科1年 プレ課題研究 テーマー覧								
代表	代表 通番 教科科目 人数 テーマ								
	1	数学	8	三平方の定理の証明					
	2	英語	5	What is English? ~Pronunciation and Spelling~ 英語とは何だろう?~発音と単語の綴りについて~					
	3	物理	6	エレベーターの落下から助かる方法					
	4	生物	7	優性形質と劣性形質について					
0	⑤	地学	2	白昼と夕方の太陽スペクトルの色の割合の分布					
	6	化学	7	バイルシュタイン試験について					
0	7	保体	3	疲労と睡眠の関係〜理数科のみんなに快適な眠りを〜					
0	8	情報	3	情報科学~VRとは?~					

(例) 物理

研究テーマ『ガラスとガラスの摩擦係数を調べる』

・教科書 P 7 2 にある静止摩擦係数の表では、ガラスとガラスの静止摩擦係数は 0.94 となっている。これを、実際に実験し 0.94 の値にはなるか調べる。また、0.94 にならない場合はその原因を考察する。

(5) 研究対象科目

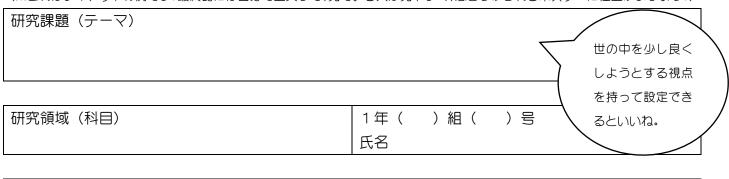
国語、数学、英語、物理、生物、化学、地学、現代社会、家庭科、保健体育、情報 (以上11科目から、第1希望~第3希望を選択し、事前調査の上、人数調整をする)

(6) 発表方法

研究ポスターを作成し、ポスター発表とする。

理数科 課題研究 評価表 ※この表は評価であり、To Doリストでもあります。

_	`	_	/	`	4 0	/	\ \ \ \ \	
()	年)	組) 믕 (


評価基準	- (O点)	I (ideas)【1点】	C(connections)【2点】	E(extensions)【3点】
	改善を要する。	知識の蓄積。	異なる領域・分野の知識を関連させ	予測して行動する。
評価規準		情報の収集、分析、保存。	理解する。	仮説、検証、考察、応用。
みつめる力	研究テーマが明確でない。	取り組む研究テーマが明	取り組む研究テーマが明確に示さ	取り組む研究テーマが明確に示さ
①課題発見能力		確に示されている。	れ、なぜ取り組むのか理由や背景が	れ、取り組む理由や背景に社会的な
			示されている。	価値が感じられる。
きわめる力	結果も考察も不十分であ	実験データを示すことが	実験データに対する考察が、科学的、	結論を導くために十分な実験データ
④考察力	る 。	できたが考察が不十分で	論理的に説得力がある。	から科学的、論理的に説得力のある
		ある。		考察を行っている。
つなげる力	原稿を読みながらの発表	原稿を見ずに、自分の言葉	グラフやフローチャートなど聴衆に	フローチャート等の聴衆にわかりや
⑤表現力	であった。	で研究内容を伝えること	わかりやすい工夫をし、自分の言葉	すい工夫があり、聴衆が発表内容を
		ができた。	で研究内容を伝えることができた。	十分に理解できる発表ができた。

採点表

	①数学	②英語	③物理	④生物	⑤地学	⑥化学	⑦保体	8情報
①課題発見能力								
(3点満点)								
④考察力								
(3点満点)								
⑤表現力								
(3点満点)								
合計点								
(9 点満点)								
メモ欄								

【1年生SSプレ課題研究ポスター】 作成のアドバイス

(※これはレイアウトの例です。最終的には自分で工夫して、見ている人が見やすく、惹きつけられるポスターに仕上げましょう。)

研究目的と背景(取り組む問題を明確にする)

結論(仮説に対する解答)

仮説(予想される結論)

例:もし \bigcirc であれば \triangle である。

もし●●したら▲▲ができる。

目的→仮説→結論 が論理的に対応す るように気をつけ よう。

研究対象と研究の方法

(先行研究や文献との違いを明確にし、研究に独自性を持たせよう。)

どのような手順で 研究を行ったか、 他者に伝わるよう に書こう。 結果(調査や実験から何がわかったか、わかりやすくまとめる。)

数値やグラフを 活用し、客観性 を持たせると科 学的になるね。

> 先行研究に異なっ た視点でメスを入 れる。調べ学習に とどまるな!

考察(個々の結果を受けて、その結果が本研究の目的に対してどんな意味を持つのか、また仮説は検証されたのかを論じる。)

参考文献

【1年生SSプレ課題研究研究ポスター】	
研究課題(テーマ)	
研究領域(科目)	1年()組()号 氏名
研究目的と背景(取り組む問題を明確にする)	<u>結論(仮説に対する解答)</u>
仮説(予想される結論)	
研究対象と研究の方法 (先行研究や文献との違いを明確にし、研究に独自性を持たせよう。)	結果(調査や実験から何がわかったか、わかりやすくまとめる。)
参考文献	<u>考察</u>

プレ課題研究

【ルール】

基本的にこれまで授業で扱った内容からテーマを設定する。(地学、化学については、個人的な知識の 範囲も可とする)

①テーマ設定・・・「問い」を立てる

第二高校の重力加速度は9.7なのか?(物理)(理由)生徒実験で9.8の班より9.7の班が多かった

②仮説設定・・・「問い」の答えを考える

◎実験誤差が生じていたと考えられるので、実験の精度を上げれば9.8になるはずである。

③研究方法・・・仮説を証明するための証拠(根拠)を集める方法を考える

- ●自由落下の実験で実験誤差が生じる要因を追求し、再実験を行い精度を上げる。
- ●他の実験で重力加速度を測定する。

④結果・・・仮説を証明するための証拠(根拠)

実験を行った結果をその精度(信頼性)とともに示す。精度とは、データの数、ばらつき、再現性など。 ●実験 A:9.80±0.03 (データ数 50) 実験誤差排除の工夫を行った。

●実験 B:9.79±0.04 (データ数 70)

⑤考察・・・仮説の検証

仮説を証明する証拠から仮説が支持される理由を論じる

●実験誤差を排除した実験 A 、別の手法を用いた実験 B の結果より第二高校における重力加速度は 9.8 であると考えられる。